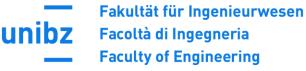
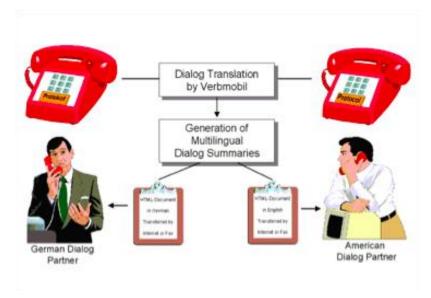
Generative AI for Sustainable Entrepreneurship Large Language Models

Raffaella Bernardi

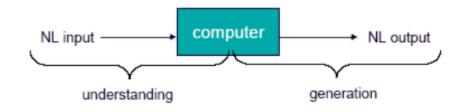
Free University of Bolzano Bozen



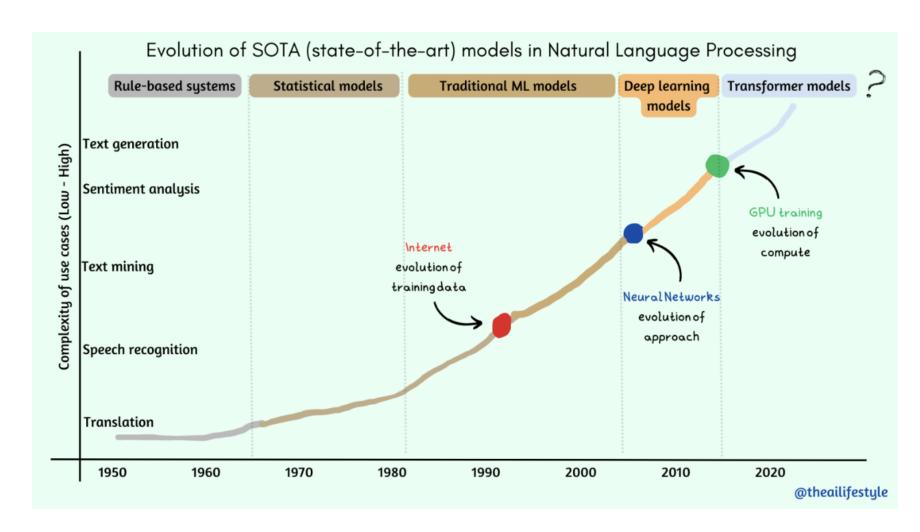
Natural Language Processing (NLP)



Verbmobil (Dream) 90M euro project in 1993-2000



FROM NLP TO GENERATIVE AITHROUGH DEEP LEARNING



Evolution of SOTA models in NLP and factors affecting them

Credits: https://www.linkedin.com/pulse/from-rulesets-transformers-journey-through-evolution-sota-yeddula/

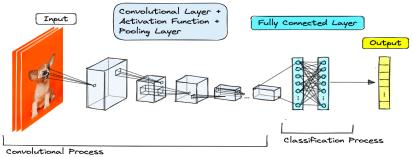
Deep Learning

Computer Vision:

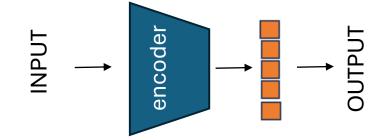
Training a Neural Network to classify an image by computing its **vector representation.**

AlexNet, Toronto University, 2012

(idea tracing back to Rochester et al 1956)



https://www.pinecone.io/learn/series/image-search/imagenet/

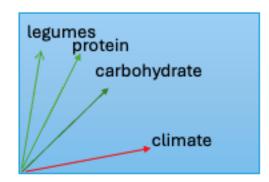


NLP:

word meaning as vectors

e.g. Baroni et al Uni. of Trento

(idea tracing to Harris 1954)

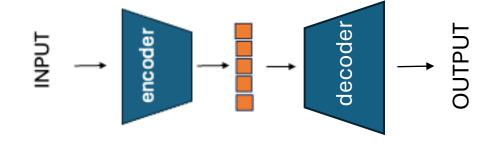


Train a NN to predict a word missing in a context.

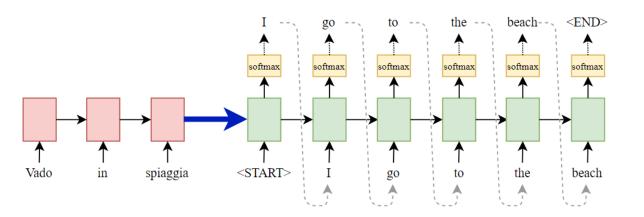
Mikolv, 2012 PhD Thesis CZ uni,

Idea tracing back to Shannon 1951 Language Models

ICA, Association for European Life Science Universities, is a network of more than 50 universities from the EU and neighbouring countries



Sequence to Sequence, Google, 2014



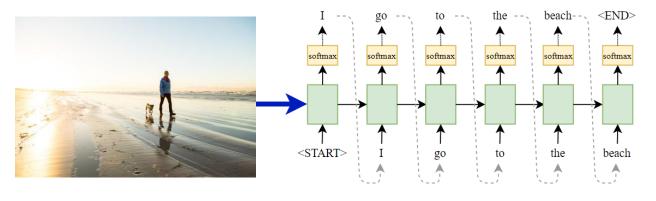




Figure 1-3. An encoder-decoder architecture with a pair of RNNs (in general, there are many more recurrent layers than those shown here)

Transformers: in parallel, and using attention

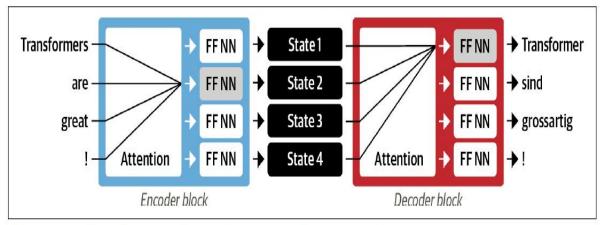
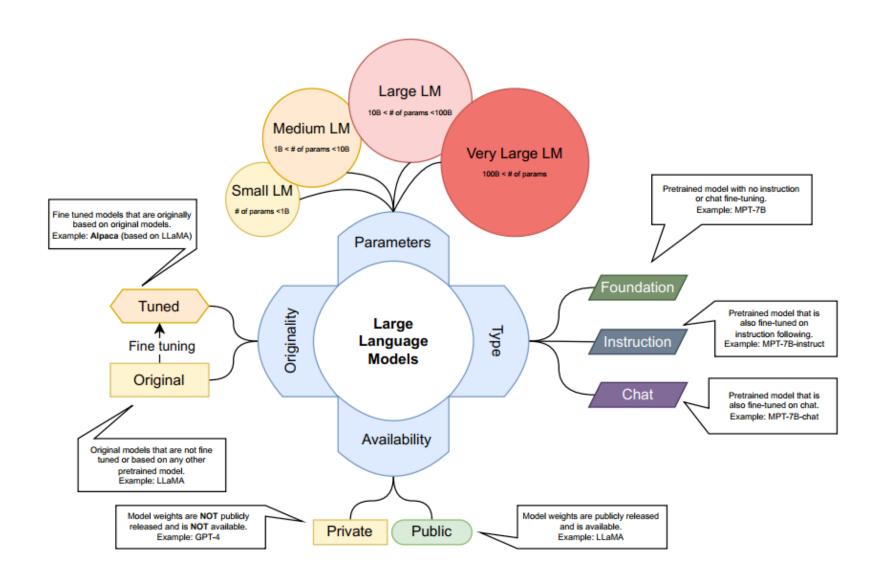
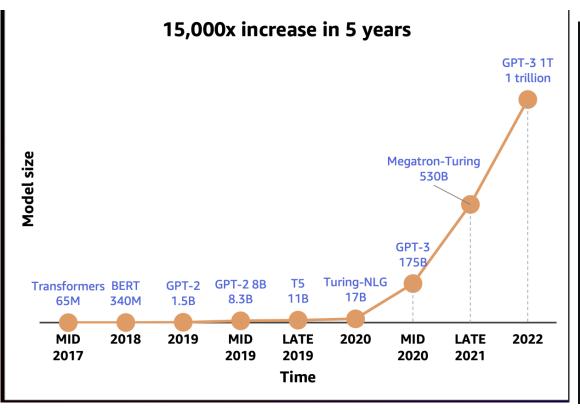


Figure 1-6. Encoder-decoder architecture of the original Transformer

NLP with Transformers, Tunstall et al 2022





Increase of Size and of Computational Costs Environmental and financial costs

Consumption	CO2e (lbs)		
Air travel, 1 passenger, NY↔SF	1984		
Human life, avg, 1 year	11,023		
American life, avg, 1 year	36,156		
Car, avg incl. fuel, 1 lifetime	126,000		
Training one model (GPU)			
NLP pipeline (parsing, SRL)	39		
w/ tuning & experimentation	78,468		
Transformer (big)	192		
w/ neural architecture search	626,155		

		Estimated cost (USD)					
Models	Hours	Cloud compute	Electricity				
1	120	\$52-\$175	\$5				
24	2880	\$1238-\$4205	\$118				
4789	239,942	\$103k-\$350k	\$9870				

Table 4: Estimated cost in terms of cloud compute and electricity for training: (1) a single model (2) a single tune and (3) all models trained during R&D.

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

Energy and Policy Considerations for Deep Learning in NLP. Strubell et al. ACL 2019. https://arxiv.org/abs/1906.02243
On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? https://dl.acm.org/doi/10.1145/3442188.3445922

Amazon web service (AWS, 2022)

https://neptune.ai/blog/nlp-models-infrastructure-cost-optimization

UNESCO Report:

Smaller models are just as smart and accurate as large ones: Small models tailored to specific tasks can cut energy use by up to 90%.

Small models are more accessible

https://www.unesco.org/en/articles/ai-large-language-models-new-report-shows-small-changes-can-reduce-energy-use-90

Mikolov et al BottleCap AI, founded in April 2025 https://www.bottlecapai.com/#blog-section

APPLICATIONS

ChatGPT ~

2. Agriculture, Food & Forestry: Use Cases of LLMs

- Curriculum & Teaching Innovation: Develop tailored educational materials for agribusiness, food safety, agro-forestry, or bioeconomy—aligned with ICA-Edu and SIG initiatives ica-europe.info +1.
- Sustainable Research Support: Assist with literature reviews, summarizing circular bioeconomy strategies, or synthesizing interdisciplinary insights for students and faculty.
- Policy & Funding Literacy: Aid committees like Agrinatura or Agribusiness to craft grant proposals, position papers, or strategy briefings for EU initiatives (e.g., CAP, biodiversity, rural development)
- Forest and Land Management Insights: Use LLMs to parse and translate technical forestry data or environmental regulations into actionable summaries.
- Agricultural Monitoring & Multimodal LLMs: Highlight research like *AgriBench*, a benchmark dataset combining images and language for agro applications. This underpins future AI tools that help in land use, crop assessment, and sustainable decision-making arxiv.

AgriBench, the first agriculture benchmark designed to evaluate MultiModal Large Language Models (MM-LLMs) for agriculture applications. https://arxiv.org/abs/2412.00465

APPLICATIONS: Need synergy

HUGGING FACE

tencent/HunyuanImage-2.1

microsoft/VibeVoice-1.5B

Browse 1M+ models

Updated 31 minutes ago + ♥ 466

Models

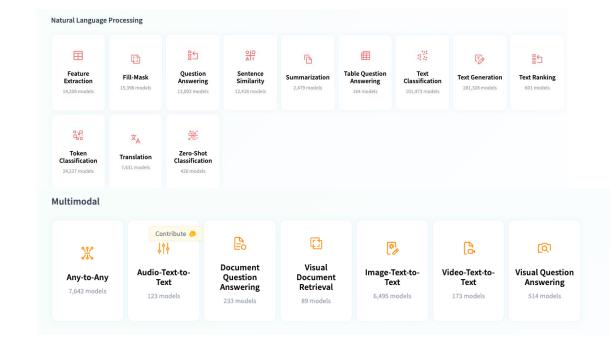


google/embeddinggemma-300m Updated 6 days ago + ± 73.7k + ♡ 566 Wan2.2 14B Fast tencent/HunyuanWorld-Voyager FineVision: Open Data is All You Need 📝 Updated 6 days ago + ± 4.66k + ♥ 533 moonshotai/Kimi-K2-Instruct-0905 Updated 5 days ago + ± 8.76k + ♥ 330 Wan 2 2 First Last Frame Updated 9 days ago + ± 245k + ♥ 1.6k

Browse 400k+ applications

HuggingFaceM4/FineVision Updated 6 days ago + ± 71.4k + ♥ 263 jupyter-agent/jupyter-agent-dataset Updated about 14 hours ago - ± 2.36k - ♥ 119 fka/awesome-chatgpt-prompts Updated Jan 6 - ± 43.9k - ♥ 9.01k Pageshift-Entertainment/LongPage Updated 5 days ago + ± 6.53k + ♥ 37

Browse 250k+ datasets



	Rank	Туре	Model		Average ① 0	IFEval ① ©	BBH ① ©	MATH ① 0	GPQA ① 0	MUSR ① 0	MMLU ③ ③	CO ₂ Cost ①
푸	1	•	MaziyarPanahi/calme-3.2-instruct-78b 🗵	=	• 52.08 %	80.63 %	62.61 %	40.33 %	20.36 %	38.53 %	70.03 %	66.01 kg
꾸	2	9	MaziyarPanahi/calme-3.1-instruct-78b ☑	=	• 51.29 %	81.36 %	62.41 %	39.27 %	19.46 %	36.50 %	68.72 %	64.44 kg
Ŧ	3	<u></u>	dfurman/CalmeRys-78B-Orpo-v0.1 ☑	-	• 51.23 %	81.63 %	61.92 %	40.63 %	20.02 %	36.37 %	66.80 %	25.99 kg
꾸	4	9	MaziyarPanahi/calme-2.4-rys-78b ☑	=	• 50.77 %	80.11 %	62.16 %	40.71 %	20.36 %	34.57 %	66.69 %	25.95 kg
Ŧ	5	•	huihui-ai/Qwen2.5-72B-Instruct-abliterated 🗵	-	• 48.11 %	85.93 %	60.49 %	60.12 %	19.35 %	12.34 %	50.41 %	76.77 kg
Ţ.	6	9	Qwen/Qwen2.5-72B-Instruct Ø	=	• 47.98 %	86.38 %	61.87 %	59.82 %	16.67 %	11.74 %	51.40 %	47.65 kg
Ŧ	7	<u></u>	MaziyarPanahi/calme-2.1-qwen2.5-72b 🗷	-	• 47.86 %	86.62 %	61.66 %	59.14 %	15.10 %	13.30 %	51.32 %	29.50 kg
Ţ.	8	•	newsbang/Homer-v1.0-Qwen2.5-72B 🗵	=	• 47.46 %	76.28 %	62.27 %	49.02 %	22.15 %	17.90 %	57.17 %	29.55 kg
Ŧ	9	<u></u>	ehristoforu/qwen2.5-test-32b-it 🗷	=	• 47.37 %	78.89 %	58.28 %	59.74 %	15.21 %	19.13 %	52.95 %	29.54 kg
Ŧ	10	•	Saxo/Linkbricks-Horizon-Al-Avengers-V1-32B	=	• 47.34 %	79.72 %	57.63 %	60.27 %	14.99 %	18.16 %	53.25 %	7.95 kg
Ŧ	11	<u></u>	MaziyarPanahi/calme-2.2-qwen2.5-72b ♂	=	• 47.22 %	84.77 %	61.80 %	58.91 %	14.54 %	12.02 %	51.31 %	28.52 kg
Ŧ	12	9	fluently-Im/FluentlyLM-Prinum Ø	-	• 47.22 %	80.90 %	59.48 %	54.00 %	18.23 %	17.26 %	53.42 %	21.25 kg
平	13	?	JungZoona/T3Q-Qwen2.5-14B-Instruct-1M-e3 ☑	8	• 47.09 %	73.24 %	65.47 %	28.63 %	22.26 %	38.69 %	54.27 %	1.40 kg

Whats Next in NLP

Towards smaller models. Challenges:

BabyLM Challenge

Sample-efficient pretraining on a developmentally plausible corpus

https://babylm.github.io/

LM-Playschool Challenge

A Challenge for Improving LLMs Through **Learning from Dialogue Game Interaction**

MULTIMODAL MODELS (beyond Language and Vision towards EMBODIED AI):

The Grand Challenge on Multimodal Superintelligence

Text, Audio, Vision, and 3D

multimodal-ai.com

CAREFUL EVALUATION

Momentè et al, EMNLP 2025

Triangulating LLM Progress through Benchmarks, Games, and Cognitive Tests

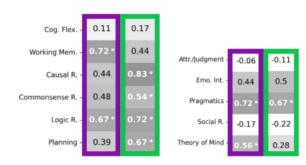


Figure 3: Correlation of cognitive abilities with performance on games and benchmarks (* = p < 0.05).

What Next in the society

