Precision farming: advances in high tech, data driven agriculture at field, farm and regional level

Corné Kempenaar Wageningen, 25 October 2018

Millennium goals and challenges for agriculture

Development of agriculture (in nutshell)

- 12.000 years of innovation
 - First revolution (10.000 BC) start of cultivation of land
 - Arab (800-1300) and British (1750-1900) agricultural revolutions
 - Green revolution (1930-1960)
 - Fourth revolution
 - Precision agriculture first mentioned around 1990
 - Later on also digital farming/smart farming/IoT/Robotics
- Note: 1-2 out of 400 generations of farmers apply digital technologies so far on there farms (1 generation is 30 years)

Technological developments

Precision Farming / Smart Farming / Digital farming

- A farming management concept based on measuring and responding to temporal and spatial variability in crops, livestock and the environment
 - Sensing -> decision making ->implementation
 - Operational, tactical, strategical operations
- Many enabling technologies are available:
 - GNSS, sensors, ICT, autonomous platforms, robotics

Expected benefits (in short): More with Less & Better

FUTURE FARMS small and smart

49

12.50

SURVEY DRONES

Aerial drones survey the fields, mapping weeds, yield and soll variation. This enables precise application of inputs, mapping spread of pernictous weed blackgrass could increasing Wheat yields by 2-5%.

FLEET OF AGRIBOTS

A herd of specialised agribots tend to crops, weeding, fortilising and harvesting. Robots capable of microdot application of fertiliser reduce fertiliser cost by 99.9%.

FARMING DATA

430

The farm generates vast quantities of rich and varied data. This is stored in the cloud. Data can be used as digital evidence reducing time spent completing grant applications or carrying out farm inspections saving on average £5,500 per farm per year.

m

TEXTING COWS

C ...

Sensors attached to livestock allowing monitoring of animal health and wellbeing. They can send texts to alert farmers when a cow goes into labour or develops infection increasing herd survival and increasing milk yields by 10%.

SMART TRACTORS

GPS controlled steering and optimised route planning reduces soil erosion, saving fuel costs by 10%.

- Right time
- Right place
- Right input
- Right amount

PA Infographic National Geographic

Buying In

With more ability to scale, large farms have higher rates of adoption for the most popular precision agriculture technologies, including soil and yield mapping and guidance systems.

SIZE MATTERS

APPLICATION

Mapping is most practical, applying to both seeding density and fertilizer use. Variable-rate technology (VRT) allows farmers to customize, planting different types of seeds at multiple locations with a single pass of the tractor. But VRT comes at a high cost, requiring specialized machinery for each crop.

Precision agriculture

New technologies allow farmers to harness data in order to increase their land's productivity. Most begin the cycle by collecting information about their crop yields.

EU study: STOA report 2016 "PA Impact on EU Policy"

Business development in agri-food chains

- Food security & food safety
- Transparency of agri-food chains
 Sustainable production
- □ Competitiveness of EU-farming
- Skilled workforces

++

- Demographic and rural development
- Climate change and action

Jobs on farms in primary production

Farm holding size and number

Multi-functional agriculture

Barriers

- Skills needed
- Independent data on cost-benefit
- Implementation of technologies in farming practices
- Interoperability
- Standardization
- Smart use of sensor data (adding value to data by generic models and local calibration)

Where is the PF business case in potato?

Quantitative Information French Fries Potato Production in Flevoland, NL, clay so<u>il (Source: KWIN of WUR, 2015)</u>

	Hoe	veelheid Eenheid	_	Prijs Eenheid	Bedrag
oofdproduct	1.Closing	53560 kg the yield		0.16 €/kg	8,332
RUTOGELDOPBRENGST (a)		400/		1 Others	8,332
	gap, still o	ca. 40%		4. Others	
ITGANGSMATERIAAL		2700 kg		0.28 £/kg	756
oolgoed		2700 kg		0.20 Q/kg	/50
SEMESTING					
alkammonsalpeter		252 kg N		1.05 €/kg N	265
ripelsuperfosfaat		105 kg P ₂ O ₅		1.00 €/kg P2O5	105
ali 60 (chloorhoudend)		180 kg K ₂ O		0.64 €/kg K2O	115
GEWASBESCHERMINGSMIDDELEN					
oscalid (27%), pyraclostrobine (7%)		0.4 kg,l		66.00 €/ka	26
hloorprofam (300)		1.6 kg,l		31.00 €/	50
yazofamid (160)		3 kg,l		52.00 €/1	156
iquat dibromide (200)		4 kg,l		17.00 €/	68
uopicolide (63), propamocarb (524)	2 Mara	4.8 kg,l		20.00 €/1	96
ambda-cyhalothrin (100)	Z. More	0.05 kg,l		125.00 €/I	6
nandipropamid (250)	prociso	3.6 kg,l		36.50 €/1	131
netribuzin (70%)	precise	0.5 kg,l		44.00 €/kg	22
rosultocarb (800)	cron	4 kg,l		13.50 €/1	54
niaciopryd (480)	стор	0.15 kg,I		1/0.00 €/I	26
NERGIE 1)	Managem	ent			
troomverbruik bewaring	, in the second second	1071 kWh		0.15 €/kWh	164
liesel	Total: 190)0 €/ha		1.10 €/	285
FZETKOSTEN			J		
pscheppen		54 ton		1.80 €/ton	96
	STEN				
erekende rente	572.0	1251 £		5.50.%	69
I-mineraalmonster		0.1 keer		43.00 €/keer	4
otatopol		1 ha		19.45 €/ha	19
-					
OEGEREKENDE KOSTEN (b)					2,514
ALDO DER EENHETD ETCEN MECH	ANTEATTE (ы			5 010
ALDO PER EENHEID EIGEN MECH	ANISATIE (C=a-	5)			3,010
	3 Less la	hour and			
RBEIDSBEHOEFTE			1		
rondbewerking	advisorv	4.6 uur			
emesten		0.6 uur	1		
aaien/poten/planten	costs	1.4 uur			
espuitingen		5.3 uur			
verige gewasverzorging		2.5 uur	1		
ogsten		15.2 uur	1		
erwerken		0.0 uur	1		
		20.6 mm			

¹⁾ Energiekosten bij luchtgekoelde bewaring tot eind januari, inclusief opwarmen voor aflevering.

Frame work for analysis of crop yields

PA 1.0: Global Navigation Satellite systems (GNSS) and Controlled Traffic Farming (CTF)

PA 1.0+ Use of GAOS module for route planning

PA 2.0: yield maps

Kasrtgegevens @2016 Google Afbeeldingen @2016 , Aerodata International Surveys, DigitalGiobe, GeoContent

9% 21% 17.% 17% 17% 11% 8%

Werkdatums: 16-08-2016 - 17-08-2016

AGRONOMISCHE GEGEVENS	LEGENDA
DROOG GEWICHT	
92,61 t	8,33
GEM. DROOG GEWICHT	8.
7,52 t/ha	7.73
GEM. MSTR	1,12
15,8 %	7,4
BEWERKT GEBIED	7,05
12,31 ha	10
NAT GEWICHT	0,0/
94,06 t	0
GEM. NAT GEWICHT	
7,64 t/ha	

Copyright © 2011-2016 Deere & Company. Alle rechten voorbehouden.

PA 2.0: Crop biomass data from light reflection sensor systems, delivering crop biomass maps

PA 2.0 monitoring: Satellite image of (potato) crops

PA 2.0: Soil sensors systems for mapping of soil properties

VERIS ORGANISCHE STOF RAARD

VERISTITUTI SAART

Klant: h Bedrif: 2 Perceelt Nazm: I Min; 1 Mar: 1

Gant: bager redefland eingt: 2017 roeel: thuis links van bedrijf aant: brium DC GM HIG CDC.	101	0,0 - 0,7 % 5,7 - 5,9 % 5,4 - 5,9 %	17 19 22
Min: 3,5 % Max: 0,7 % Som: 5,2 %		4.8 5.0%	

1.	
	1.900
Klart: bayer nederland	20.2, 20.8 % 1,20 ha
edrijf: 2017	28.8 - 30.1 % 1,70 ha
read: they links you bedry!	28,3 · 20,2 % 2,75 ha
laam: Iulum EC OM HG CEC - 10.1	24,4 - 26,2 % 2,01 ha
Witt: 14,5 %	22.5 - 24,3 % 2,11 to
Quere: 25 4 %	20.0 22.4 % 1,71 ha
	1 14.9 20.5 % 1,35 ha

Potato production cycle: VRA haulm killing

Reglone 5 Minimum effective dose (I/ha) 4.5 4 3.5 3 2.5 2 1.5 0.5 0 20 40 60 0 **Reflection parameter CropScan**

VRA algorithm Reglone (standard) for potato haulm killing

VRA on the go (2009)

- Leipzig, potato crop, Yara N-Sensor
- Reglone herbicide, standard situation
- Pictures below 4 days after spraying

Uniform dose (flat rate): 2,5 L Reglone/ha @ 300 L water per ha

Variable rate application: gem. 1,5 L Reglone/ha @ 200 L water per ha

VRA task map from drone sensor system (2012) (Reglone task map (av. rate 0.9 L/ha))

Acknowledge ment: TerraSphere, Vd Borne

For quality of

My Akkerweb

Selection of field, biomass data, VRA algorithm and machine gives task map

High resolution biomass map from drone

Drone image and dosing map (2017) (reduction over 50%)

Other examples of PA 2.0+ (monitoring and VRA)

- Grip on Grass
- GAOS route navigation
- VRA Lime
- VRA Topdress Nitrogen
- VRA Soil herbicides
- VRA planting
- Late blight control (here infection risk assessment/timing control most important)
- Nematode control (here population dynamics most important)

Potato production cycle: VRA Topdress N

From Chlorophyl index map to N-topdress task map

Soil maps input for soil herbicide task maps

VerisLutum202	0.zip	A AL
Quantity Name Data Definition	Lutum verisLutum2020	LOURS HEAL
Interpolation Raster size X (m) Raster size Y (m) Workingwidth (m)		Perceel 2 Noord
Contour Params Save Delete 16.11 - 17.50	Back	Cropfield Perceel 2 Noord Clay LUTUM - VerisLutum2020.2 ▼ Organic Matter ORGMATTER - VerisOM20 ▼
17.50 - 18.90 18.90 - 20.23 20.29 - 21.60 21.68 - 23.07 23.07 - 24.44 24.46 - 25.85 25.85 - 27.25	VerisOM2020.csv	Product Boxer Sprayer Optimal spraying volume 250 Vha Variation +/- 10 %
27.25 - 28.64 28.64 - 30.03 30.03 - 31.42 31.42 - 32.8	Quantity Organic Matter Name VerisOM2020 Data Definition [OM]	Water usage 1361 liter Usage of Boxer 19.969 liter (1.45 %) Download ISOXML taskcard
	Interpolation IDW Raster size X (m) 20 Raster size Y (m) 20 Workingwidth (m) 20 Contour Params V	Download shape taskcard
	Save Delete Back	

Image: Howard F. Schwartz, Colorado State University

Potato late blight DSS and VRA maps

The NemaDecide Geo supply chain

Potato cyst nematodes, root knot nematodes, root lesion nematodes

Four PA 2.0 applications in potato

Sidedress N

Potato haulm killing

National Fieldlab Precision Agriculture (NPPL)

The project will run 4 years

The project is initiated by ProAgrica and WUR. Financial resources are mainly from Ministry of Agriculture (LNV).

NPPL aims to achieve "more sustainble agriculture" by stimulation of adoption of Precision Agriculture applications.

We aim at farmers in the early adopters and early majority groups

Selection process of six farmers in NPPL in 2018

landbouw samengebracht en bruikbaar gemaakt voor telers. Het project vloeit voort uit de Voedselagenda 🔶

17boet/11_Milappi 6p.indd 36-37

38

NPPL website

www.proeftuinprecisielandbouw.nl

NPPL farmers 2018

• Six farms

Techniek

De Nationale Proeftuin Precisielandbouw is gestart. Zes akkerbouwers verspreid over het land gaan dit jaar met hulp van experts precisielandbouw op hun bedrijven halen. Dit project moet precisielandbouw een impuls geven.

akkerbouw

21376452

E decinemers aus de Nationaise Protontill IP-ciselindiaoux (08792). Uij gerelesterend. Zes auferbouwers gaan met halp út Wagenin-op hun bedrijven. Ze gaan aan de slag met plantspe-fieleke wrafslede uitvoering van verkinaansegelen. Dat wil seggen: op de júsier plants de julien howen heid bezergingundelde of Ownum /ment daare: Beheid bestrigdingsmiddel of Usinstjimeis Gosereti. De NFFJ-deelmeners sitten verspreid over Ne-derland op klei-, Joss-, and- en dalgrond en vor-men zo een goode abpiegeling van de akkerbouw in Nederland. Ze zitten qua bedrijkoppervlakte wat boven het gemiddelde, maar het zijn in het Nederlandte skkerbouwlandschap ook niet per se bedradste vis bedrigten ook niet per se recertainiste asaccitouwianischap ook ner pri s-uizonderflig zore bedrijven. Belan zijk bij de selectre is geweest dat de bedrij-ven een duideljke toekonststrategie hebben, waar-in ze een ol zien voor precisielandbouw. Het zijn green precisievorlopers, maar zitten wel in het voorste gedeelte van het peleton. Ze weten wat ze

Boomkamp een variabele bespuiting uit te voeren. Vanwege de tijdsdruk was het die dag niet mogelijk de oorzaak van dit probleem te achterhalen. Vandaag 30 april zijn vertegenwoordigers van d., Meer weergeven

<

-

NPPL zoekt 6 nieuwe kandidaten voor 2019 there are been and

De Nationale Postikele Prezidide a forese (1998.) breidt uitsaar 6 nicewe companyingen. Ook we houders maken kans op grotis motivatively, also consider a motig on has belief to inneverse. Transportation bij KPU, na sim tekened

Schrijf je in

New applications in 2019 NPPL

- Dairy farming
 - Fertilizer use
 - Irrigation
 - Weed detection
 - Birds protection
 - Route planning
 - VRA fungicides

Inschrijving 2019 geopend!

DOE MEE!

naast akkerbouw nu ook precisietechnieken voor veehouderij

Inschrijven kan t/m 19 oktober 2018

制度的方向几万

Bescherming legnesten en fauna in grasland

Precisiebemesting glasland

Variabel doseren fungiciden in aardappelen en/of bloembollen

Beregeningsadvies op maat

via onkruiddetectie

Plaatsspecifiek onkruidbestrijden

Planning en optimalisatie

rijpaden

Towards PA 3.0 and 4.0

■ PA 3.0

- More `on the go' applications
- More and better sensing at high resolution
 - Crop condition and quality, soil quality, biodiversity
- Better decision making based on site specific data and models
- More robotics / autonomous machines / mixed cropping

PA 4.0

- Data sharing between farmers and chain partners
- Better decision making based on shared data (less field experiments)

PA 3.0 in autonomous machine platforms and actions on-the-go https://www.wur.nl/en/Research-Results/Projects-and-programmes/Agro-Food-Robotics.htm

Robotics assisting in food production chain

https://www.wur.nl/en/Research-Results/Projects-and-programmes/Agro-Food-Robotics.htm

Ongoing PP R&D projects boosting PA

Data Intensive Smart Agrifood Chains

Challenge: yield gap at field level

Method

- Data-set of group of farmers in a region (>20)
 - Crop management data
 - Link with environmental (open) data
- Study at crop rotation level
- Calculate crop yields with mechanistic model (Yp, Yn, Yw, Ywn)
- Compare with actual yield
- Factor and frontier analysis to rank yield determining factors

Impressies van PL2.0

PPS Op naar Precisielandbouw 2.0

Achtergrond

http://www.precisielandbouw-openteelten.nl/disac/44-nederlandstalige-content/pl20

Decision support system for farmers to rank yielding factors

In conclusion

- PA is changing agriculture, food production and landscape (4e revolution?)
- Adoption of guidance systems in modern agriculture is high (PA 1.0), but adoption of variable rate applications at 10-50 m² is still low (PA 2.0, but increasing)
- Adoption of variable rate at 1 m² / plant level requires R&D/innovations on sensing, robotics and ICT (PA 3.0, on the go systems) to become mainstream
- Data-driven ag. (PA 4.0) requires besides R&D/innovations on data analytics also trust in data sharing and compliance to FAIR by aligned parties

Will analytics replace the farmer at the end?

The Analytics Continuum

Figure 1. The Analytics Continuum (Gartner): Developments in data driven research progress from descriptive analytics, to predictive, to prescriptive. The latter facilitates (real-time) automated decision support.

Thank you for your attention

www.precisielandbouw.eu

http://precisielandbouw-openteelten.nl/ www.proeftuinprecisielandbouw.nl

Email1: corne.kempenaar@wur.nl Email2:c.kempenaar@aeres.nl Tel.: +31654954413

Skype: corne.kempenaar

