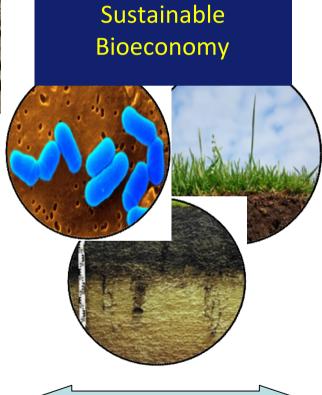


Skills for an Integrated Bioeconomy of the Future

Prof. Dr. Ulrich Schurr

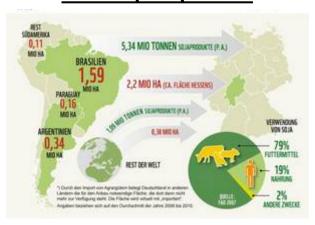
Integrated Bioeconomy


Climate Change

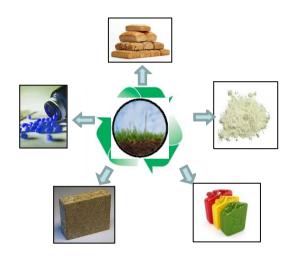
Energy

Natural Resources

Food/ Feed


Challenge

Limitation: yield, land, natural and biologocal resources



Global perspective

Novel demands in quality and scale

Industry and consumers

The way towards a sustainable bioeconomy

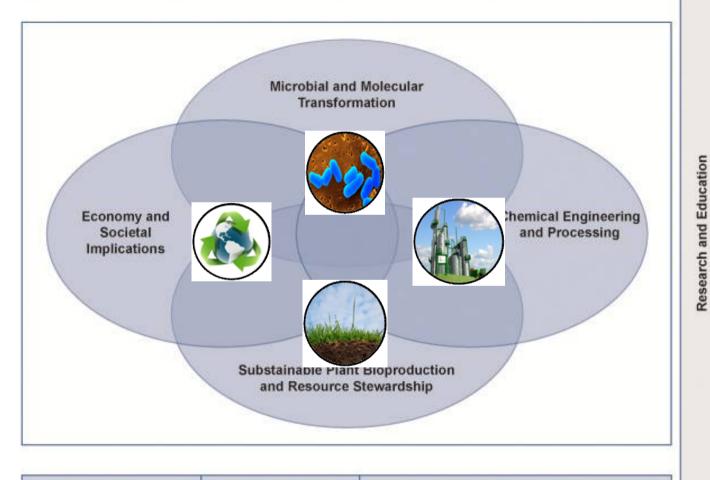
aims		requirements	research		h	Economy and politics
		Economy and socio-				
Sustainability	Innovative and competitive products	economy			Se	
			ses		eince	Novel cooperation
	Efficient production from raw material to products	Microbial and molecular transformation	- and agro sciences	ring	Economy and social sceinces	Novel
				engineering		technologies
		Efficient and integrated processin		enç		Novel markets
			Bio-		cono	
	Efficient production of biomass	Sustainable production			Ш	
		and ressource stewardship				

Bioeconomy Science Center -

Regional competence for a global sustainable bioeconomy

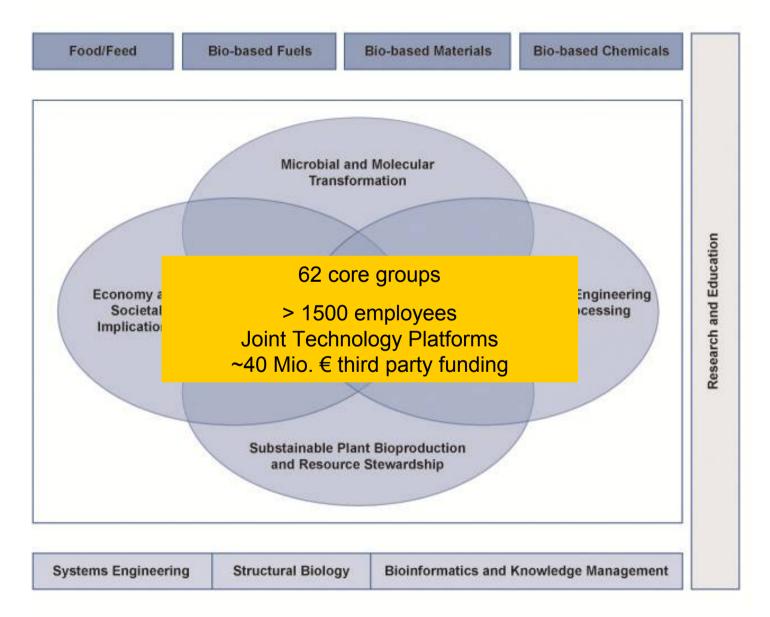
engineering meets natural sciences

- Technology platforms
- Strategic research


Excellent natural sciences

- Modern agro-sciences
- Food renewable ressources energy

Food/Feed Bio-based Fuels Bio-based Materials Bio-based Chemicals



Systems Engineering

Structural Biology

Bioinformatics and Knowledge Management

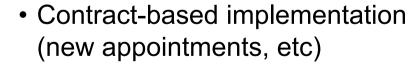
Topics in the BioSC

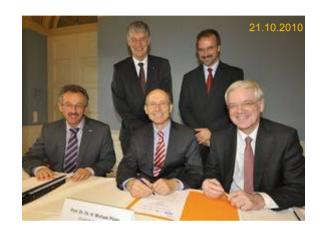
- Improvement of quality and quantity of biomass
- Resource use and stewardship (land, soil, nutrients, water)
- Production systems in global change

- Chemicals, pharma and proteins from renewable resources
- Whole cell, isolated enzyme and chemical catalysis (hybrids)
- Synthetic biology for novel products for chemical industry and pharma

- Extraction from plants to intermediates
- Transfromation from intermediates to products
- Product design from molecule to function

- Global and regional socio- and economic frameworks and conditions
- · Environment and resource economy
- Organisation and management of process and value chains
- Consumer and acceptance




Mission and pillars of BioSC

- Scientific excellence in knowledge generation and transfer
- Education for needs and careers
- Long-term strategy and joint development

- Increase sustainable plant production on limited land resources
- Resource- and energy-efficient processing to valorize as much and as diverse as possible
- Diversify products and integrate processes
- Market orientation
- Competitiveness in global science and markets
- Acceptance of society and customers

- Increase sustainable plant production on limited land resources
- Resource- and energy-efficient processing to valorize as much and as diverse as possible
- Diversify products and integrate processes
- Market orientation
- Competitiveness in global science and markets
- Acceptance of society and customers

Optimising the science base

- Accelerate knowledge generation and implementation through novel breeding and plant management technologies
- Bio- and agro sciences need to become quantitative
- Integration of all possible technology options to increase throughput and quantitatification (robotics, IT, mathematics, nanotechnology, etc.)
- Systemic approaches overcoming borders of disciplines
- Globalising bioeconomy science community (work force and utilising natural resources globally)

- Increase sustainable plant production on limited land resources
- Resource- and energy-efficient processing to valorize as much and as diverse as possible
- Diversify products and integrate processes
- Market orientation
- Competitiveness in global science and markets
- Acceptance of society and customers

Optimising the science base

Integrating with economy

- Systemic approaches linking novel knowledge into integrated processes for products (science-to.business)
- Improving knowledge about markets and economy (business-to-science)
- Realising and impementing international cooperation

 Increase sustainable plant production on limited land resources

Optimising the science base

 Resource- and energy-efficient processing to valorize as much and as diverse as possible

Integrating with economy

 Diversify products and integrate processes

- Market orientation
- Competitiveness in global science and markets
- Acceptance of society and customers

Integrating with society

- Communication with society about risks and benefits for acceptance and science-based decision making
- Developing a perspective of the role of science and bioeconomy on a global scale
- Life-long learning (from schools to senior scientists)

- Increase sustainable plant production on limited land resources
- Resource- and energy-efficient processing to valorize as much and as diverse as possible
- Diversify products and integrate processes
- Market orientation
- Competitiveness in global science and markets
- Acceptance of society and customers

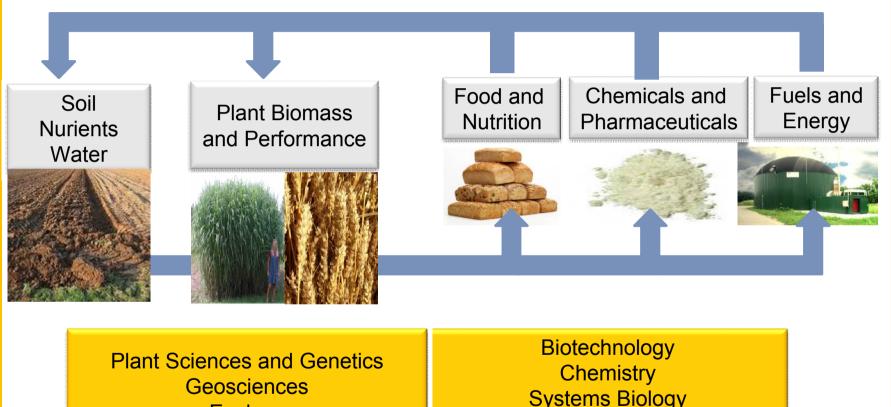
Needs

Optimising the science base

Integrating with economy

Integrating with society

Different roles for all relevant stakeholders



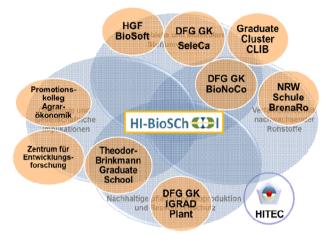
Multidisciplinary and cross-sectorial education - Many sciences are needed

Ecology Agro Sciences

Systems Biology Informatics/ Robotics/ Engineering **Processing - Engineering**

Economy, Social Sciences, Political Sciences, Communication and Media

Skills and Instruments



Skills

- Sound basis science and discipline
- Soft skills in management, networking, multidisciplinary team skills, media, etc.
- Team skills beyond the individual excellence

Integrated Education Networks

- Graduate education: coordination of bioeconomy specific education based on existing disciplinary approaches
- Regional education clusters linked to international networks
- Senior scientists in academia and industry: Specific add-on education for bioeconomy professionals
- Utilising demonstration projects for teaching specific skills
- Integrating academic education with practical industry experience
- Adapting incentive systems in sciences for translational research and carrier flexibility

Skills and Instruments

Building adequate skills starts at schools

Overcoming the "bio- illiteracy" of today to form an educated public and enthusiastic students

Technical training:

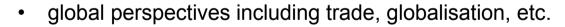
 Training on novel technologies to farmers, horticulturalists, engineers, etc.: add-on training for special skills (e.g. molecular gardening, biomass web economics, etc.)

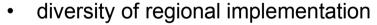
Academic Training

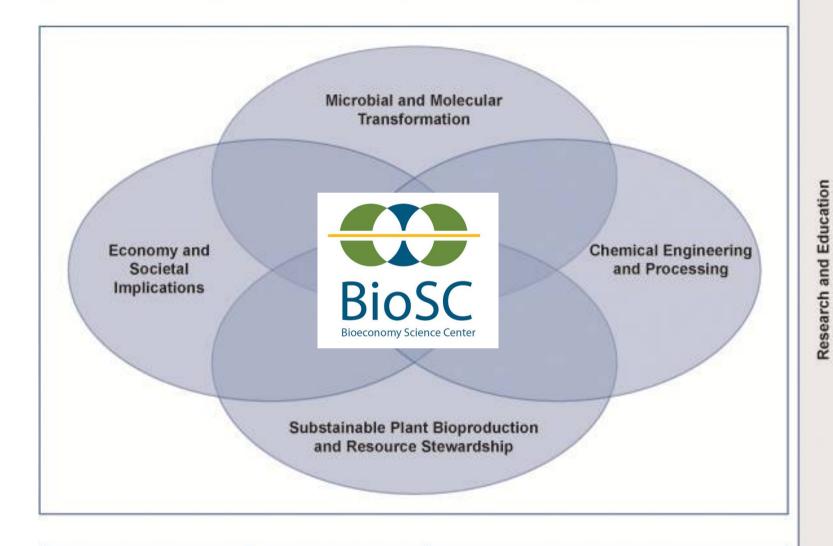
See "Multidisciplinary and cross-sectorial education"

Life-long learning and training

 Education of senior professionals across discipines, sectors from academia and industry


Skills and Instruments


- Industrialised, emerging and developing countries share the vision of Bioeconomy
- Implementation of Bioeconomy requires regional context and its link to international and global interaction of bioeconomy



Systems Engineering

Structural Biology

Bioinformatics and Knowledge Management

Skills for an Integrated Bioeconomy

- Multidisciplinary and cross-sectorial education
- Education at all skill levels and in all levels of education and lifelong- learning
- International and global perspective
- International training
- Encourage mobility
- International recognition of qualification
- Soft skills
- Management
- Communication and media